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Optimization in Quantum Information Systems
I My background is solving difficult numerical optimization problems

arising the quantum space.

I I’ll talk about four today:

I Maximizing concurrence with Otten (HRL), Pelton (UMBC), Min, Wild, and Gray

(ANL)

I Optimal Circuit Cutting with Tang, Tomesh, Martonosi (Princeton), and Suchara

(ANL)

I Design of a fixed frequency quantum processor with Morvan and Chen

(LBNL)

? Maximizing quantum Fisher information
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Outline

Maximizing Concurrence

Optimal Circuit Cutting

Fixed-frequency quantum processor

Maximizing Quantum Fisher Information

3 of 27
.



Maximizing concurrence
I Entanglement is delicate thing and can be easily destroyed

I Concurrence is a measure of entanglement of a quantum system

I Concurrence of two quantum dots excited by a single optical laser pulse:

“QuaC: Parallel time Dependent Open Quantum Systems Solver.” Otten
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Maximizing concurrence
I Pairwise concurrence is measured by

Cij = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4},

where λk are the (descending) eigenvalues of a density matrix relating
particles i and j .

I Possible goal: Identify quantum system parameters x solving

maximize
x

∑
ij

Cij(x)2
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plasmonically coupled quantum dots. Physical Review A, 2016
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Possible extensions
I Concurrence is not computably defined for odd numbers of qubits

(there are formulas, but they are hard to compute numerically).

I There is a computable definition for even numbers of qubits which could
be used.

I Higher dimensional entanglement is less well understood theoretically,
but there are some special states would be interesting to try and create.
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Optimal Circuit Cutting
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Real-world circuit fidelities
Take an n-qubits quantum computer from IBM and run
Bernstein-Vazirani algorithm using b n

2c qubits.
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Can we help this?
I The set of quantum circuits that can be reliably run on NISQ devices is

limited by their noisy operations and low qubit counts.

I We consider a hybrid classical/quantum computing approach

I Cuts large quantum circuits into smaller subcircuits

I Classical post-processing can then reconstruct the output of the original
circuit.
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Modeling variables

yv ,c ≡

{
1 if vertex v is in subcircuit c

0 otherwise
, ∀v ∈ V ,∀c ∈ C

xe,c ≡

{
1 if edge e is cut by subcircuit c

0 otherwise
, ∀e ∈ E ,∀c ∈ C

The number of qubits required to run a subcircuit is the sum of:
I The number of original input qubits
I The number of initialization qubits induced by cutting
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Modeling variables
I The number of original input qubits is αc ≡

∑
v∈V wv × yv ,c ,∀c ∈ C ,

where wv ∈ {0, 1, 2} is the number of original input qubits directly
connected to v ∈ V .

I The number of initialization qubits is:
ρc ≡

∑
e:(ea,eb)∈E xe,c × yeb,c ,∀c ∈ C .

I The number of measurement qubits is

Oc ≡
∑

e:(ea,eb)∈E

xe,c × yea,c ,∀c ∈ C .

Consequently, the number of qubits in a subcircuit that contributes to
the final measurement of the original uncut circuit is

fc ≡ αc + ρc −Oc ,∀c ∈ C .
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Constraints
I Every vertex must be in a subcircuit

I The required qubits for each circuit is limited.

I Some symmetry-breaking constraints
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Objective
I The number of cuts made is

K =
1
2

∑
c∈C

∑
e∈E

xe,c ,

I The objective function for the MIP cut searcher is reconstruction time
estimator

L ≡ 4K
nC∑

c=2

c∏
i=1

2fi ,

which captures cost of building the full 2n probabilities for a n-qubit
uncut circuit
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Results
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Outline
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Optimal Circuit Cutting
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Maximizing Quantum Fisher Information
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Scaling up quantum devices is a challenge
I Fixed-frequency transmons are an appealing technology due to their

long coherence times (∼100 µs)

I Scaling fixed-frequency architectures requires precise relative frequency
requirements.

I Want to avoid collisions in frequencies.

Hertzberg et al., https://arxiv.org/pdf/2009.00781.pdf
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Problem description
I A processor is “collision-free” when the various types of frequency

collisions are avoided (with some margins) determined through modeling
or experimentally

I The yield measure the number of a potentially valid quantum processor

I Chips are fabricated in batches, and they want to have at least one valid
chip per batch.
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Frequency collisions can take a variety of forms
I fi avoid the 0 7→ 1 transitions of j :

|fi − fj | ≥ δ1 ∀(i , j) ∈ E

I Other types of collisions are more subtle: Can happen when the sum of
frequency of the target and a neighbors is equal to the frequency of the
|0〉 → |2〉 2 photon transition.

|2fi + αi − fk − fj | ≥ δ7
∀j , k ∈ N s.t. ∃i ∈ N with (i , j) ∈ ~E and (i , k) ∈ ~E or (k , i) ∈ ~E

I A possible objective:

maximize
∑

i

wiδi

with δi ≥ δ̄i .
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Two solutions on 6-node ring
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Active extensions
I Accounting for qutrits

I Identifying an optimal chunk that allows for massive designs

I Trying to optimize the connectivity in the graph. (For now, just
assigning frequencies to a given architecture.)
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Quantum Fisher information
I A quantum analogue to classical Fisher information (which describes

how sensitive a model is changes in a parameter.)

I A central quantity in quantum sensing.

I Classical: for n independent sensors sensing a physical parameter, the
precision is improved O( 1√

n ).
I Quantum: the precision is improved O( 1

n ).

I For a state with density matrix ρ(x) =
∑N

i λi |ψi 〉 〈ψj |, the QFI is

F(ρ(x),H) =
∑
i ,j

λi − λj

2(λi + λj)
|〈ψi |H |ψj 〉|

I For large N, computing the QFI can be prohibitively difficult. Many
papers maximize (upper) bounds of QFI
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papers maximize (upper) bounds of QFI
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Mathematical fun
Example with N = 8. Take a starting point x0 and a random direction
d . Compute eigen-decomposition for ρ(x0 + αid) and plot eigenvalues

23 of 27
.



Mathematical fun
Instead, let’s number of the eigenvalues of ρ(x0). Number the
eigenvalues of ρ(x0 + αid), using the eigenpairs at ρ(x0 + αi−1d)
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Further questions
I Can we get d

dx ρ(x) for some parameters (possible for pulse parameters).

I For arbitrary H, find optimal states ρ and hope that their
symmetries/generalizations “scale”. (Can happen.) Show improved
optimization on such H (and leave it to the physicist to find systems so
that such results “scale”.)

I Some H/ρ pairs may have analytic forms for their eigenpairs (but we
really need cross-products to be “nice”). What could we do in that case?

I Short time optimization vs. steady-state optimization. Are we trying to
optimize for sensing at some time t or at infinity?
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Notation

If you have a problem

minimize {f (x) : x ∈ Rn} when f (x) = h(F (x)),

I h : Rp → R is known
I Smooth or nonsmooth
I Convex or nonconvex
I Has known derivative or subdifferential
I Relatively cheap to evaluate

I F : Rn → Rp is relatively unknown
I Based on a simulation
I Relatively expensive to evaluate
I Stochastic

Use knowledge of h to use fewer calls to F .
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Contact

Thanks for listening! Questions?

jmlarson@anl.gov

This work was supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Accelerated Research for
Quantum Computing program
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